Ensemble: Community-Based Anomaly Detection for Popular Applications
نویسندگان
چکیده
A major challenge in securing end-user systems is the risk of popular applications being hijacked at run-time. Traditional measures do not prevent such threats because the code itself is unmodified and local anomaly detectors are difficult to tune for correct thresholds due to insufficient training data. Given that the target of attackers are often popular applications for communication and social networking, we propose Ensemble, a novel, automated approach based on a trusted community of users contributing system-call level local behavioral profiles of their applications to a global profile merging engine. The trust can be assumed in cases such as enterprise environments and can be further policed by reputation systems, e.g., by exploiting trust relationships inherently associated with social networks. The generated global profile can be used by all community users for local anomaly detection or prevention. Evaluation results based on a malware pool of 57 exploits demonstrate that Ensemble is an effective defense technique for communities of about 300 or more users as in enterprise environ-
منابع مشابه
A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملImpact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کاملMultilevel Anomaly Detection for Mixed Data
Anomalies are those deviating from the norm. Unsupervised anomaly detection often translates to identifying low density regions. Major problems arise when data is high-dimensional and mixed of discrete and continuous attributes. We propose MIXMAD, which stands for MIXed data Multilevel Anomaly Detection, an ensemble method that estimates the sparse regions across multiple levels of abstraction ...
متن کاملAnomaly detection in banking operations
This paper presents an overview of anomaly detection algorithms and methodology, focusing on the context of banking operations applications. The main principles of anomaly detection are first presented, followed by listing some of the areas in banking that can benefit from anomaly detection. We then discuss traditional nearest-neighbor and clustering-based approaches. Time series and other sequ...
متن کامل